Split Core Hall effect Current Sensor

SCY15C

Product description

Features

- Based on Hall effect measurement principle, open loop circuit mode.
- The isolation voltage between primary and secondary is greater than 3000VAC.
- Can be opened and closed up and down, no need to disassemble the busbar, easy to install.
- Dual channel measurement in one sensor, high channel measure 0~750A, 0~1000A, low channel measure $0 \sim 75$ A, $0 \sim 100$ A.
- Comply with UL94-V0 flame retardant rating.
- Use automotive-specific lead connector output

Performance

- It can measure DC, AC, pulse, and various irregular waveform currents of cable conductors under isolation conditions.
- Wide measurement range, fast response speed, low zero drift, low temperature drift, high accuracy and good linearity.
- Dynamic performance (di/dt and response time) is optimal when the busbar is fully filled with primary perforations.
- Strong ability to resist external electromagnetic interference (BCI, EFT, CS, CE, ESD, dv/dt, etc.).

Application

It can be widely used in communication power supply, UPS, photovoltaic inverter, electric vehicle drive and other products.

Implementation standards

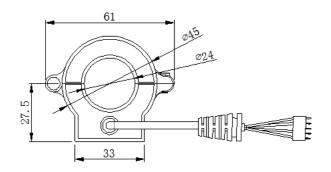
- GB/T 7665-2005
- JB/T 7490-2007
- JB/T 25480-2010
- JB/T 9473-2020
- SJ 20792-2000

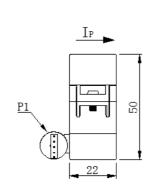
Certification

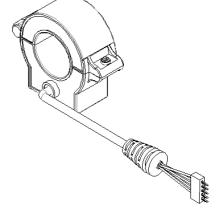
Shenzhen SoCan Technologies Co.,Ltd

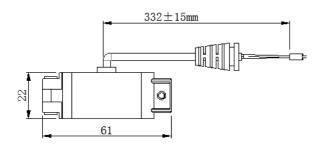
SoCan is committed to continuously improving product quality, and the company reserves the right to update its products.

Technical Parameters

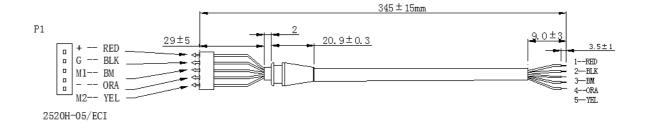

Parameters(25°C)	Model	SCY15C-		
		750A	1000A	
High Primary Current (I _{PH})		750A	1000A	
Low Primary Current (I _{PL})		75A	100A	
Saturation Current (I _P)		750AT	1000AT	

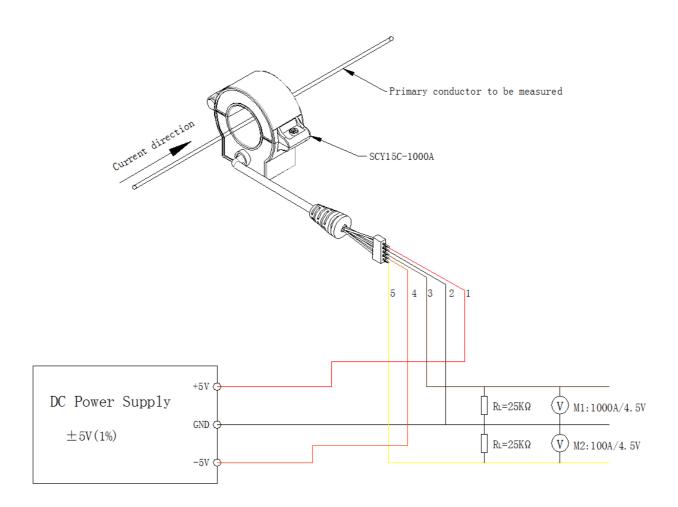

Electrical Data


Item	Min.	Typical	Max.	Unit
Input power supply voltage range Vc (±5%) (Remark 1, Remark 2)	-	±5	-	V _{DC}
Current consumption Ic	-	±25	±30	mA
Withstand resistance R _{INS} @500V DC	1000	-	-	ΜΩ
Output voltage Vout @ I_{PN} , $R_L=25K\Omega$, $T_A=25^{\circ}C$	$V_{OUT} = 4.518 * \frac{R_L}{102 + R_L} * \frac{I_P}{I_{PN}} + V_{OE}$		V	
Output internal resistance R _{OUT}	-	102	-	Ω
Load Resistance R _L (Remark 3)	-	25	-	ΚΩ
Accuracy X @I _{PN} , T _A = 25 °C	M1:±1% M2: ±2%		%	
Linearity ε_L @ R_L =25 $K\Omega$, T_A = 25 $^{\circ}$ C	-	±1	-	%I _{PN}
Offset voltage $V_{OE}@T_A=25^{\circ}C$	M1:±20mV M2: ±50mV		mV	
Hysteresis voltage V _{OM} @ I _{PN} →0	M1:±20mV M2: ±50mV		mV	
Temperature Coefficient of Offset Voltage TCV _{OE}	-	±1	±2	mV/℃
Output voltage temperature coefficient TCV _{out}	1	±0.08	±0.15	%/°C
Response time $t_D @ 0 \rightarrow I_{PN (Remark 4)}$	-	5	7	us
Ambient operating temperature T _A	-40	25	80	${\mathbb C}$
Ambient storage temperature T _s	-40	25	80	${\mathbb C}$
Withstand voltage V _D @50Hz,60s,0.1mA		3000		V_{AC}
Weight m		80		g


Dimensions (in mm)

SCY15C





序号	标识	说明	颜色
1	+	+5V	RED 红
2	G	GND	BLK 黑
3	M1	750A OUT	BM 棕
4	-	-5V	ORA 橙
5	M2	75A OUT	YEL 黄

Wiring Reference:

Notes:

1. Size error: ± 0.5 mm;

2. Primary aperture: φ24mm;

3. SCY15C wire shell: 2520H-05/ECI,

Terminal: 2521-2/ECI;

- 4. The IP indication direction is the positive direction of the current;
- 5. Incorrect wiring may cause damage to the sensor.