Hall effect Current Sensor SCK3 Series

Product description

Features:

- Based on the Hall effect measurement principle, open loop circuit method.
- The isolation voltage between primary and secondary is greater than 3000VAC.
- Easy to install, small in size and not occupying space.
- The material of the product has good mechanical properties such as corrosion resistance, aging resistance, and heat resistance.
- Potting glue has elastic characteristics.
- Designed according to UL94-V0 flame retardant rating.

Performance:

- It can measure DC, AC, pulse, and various irregular waveform currents of cable conductors under isolation conditions.
- High measurement accuracy, wide range, fast response speed, low zero drift, low temperature drift, small overshoot, and good linearity.
- The dynamic performance (DI/DT and response time) is the best when the busbar is completely filled with the primary perforation.
- Strong ability to resist external electromagnetic interference (ESD, EFT, CS, CE, BCI, dv/dt, etc.).

Implementation standards:

- GB 7665
- JB/T 7490
- JB/T 9329-1999
- JB/T9473-1999
- SJ/20792-2000

Application:

- It can be applied to AC frequency conversion speed regulation and servo motor traction.
- Battery power, uninterruptible power supply.
- Switching power supply, welding machine power supply.
- Electric vehicles.
- New energy sources such as photovoltaics.

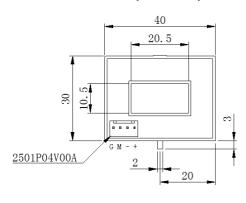
Certifications

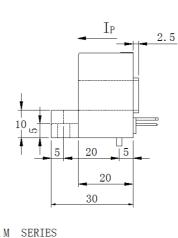
Technical Parameters

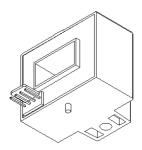
Model	SCK3-							
Parameters (25°C)	50A	100A	150A	200A	300A	500A	600A	
Primary Current (A)I _{PN}	50A	100A	150A	200A	300A	500A	600A	
Primary Current Max. Peak Value (A) I _{PM}	±150A	±300A	±450A	±600A	±900A	±1200A	±1200A	
Output voltage (V) V_{out} @ $\pm I_{PN}$, R_L =10 $K\Omega$	±4V±1%							

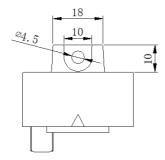
Electrical Data

Item	Min.	Typical	Max.	Unit
Input power supply voltage range Vc (Remark 1)	±11	±15	±18	V_{DC}
Operating voltage fluctuation range Vcc (Remark 2)	±14.25	±15	±15.75	V _{DC}
Current consumption Ic	-	±13	±15	mA
Withstand resistance R _{INS} @500V DC	1000	-	1	ΜΩ
Output voltage Vout @ I_{PN} , $R_L=10K\Omega$, $T_A=25^{\circ}C$	3.96	4.0	4.04	V
Output internal resistance R _{OUT}	101	102	103	Ω
Load Resistance R _L (Remark 3)	1	10	-	ΚΩ
Accuracy X @ I_{PN} , $T_A = 25^{\circ}C$	-	±1	±1.5	%
Linearityε _L @ R_L =10KΩ, T_A = 25°C	-	±0.5	±1.0	%I _{PN}
Offset voltage $V_{OE}@T_A=25^{\circ}C$	-	±10	±20	mV
Hysteresis voltage V _{OM} @ I _{PN} →0	-	±10	±20	mV
Temperature Coefficient of Offset Voltage TCV _{OE}	-	±0.5	±1	mV/℃
Output voltage temperature coefficient TCV _{out}	-	±0.05	±0.1	%/°C
Response time $t_D @ 0 \rightarrow I_{PN}$	1	3	5	us
Bandwidth BW	0	-	50	KHz
Ambient operating temperature T _A	-40	25	125	$^{\circ}$ C
Ambient storage temperature T _s	-40	25	125	$^{\circ}\mathbb{C}$
Withstand voltage V _D @50Hz,60s,0.1mA		3000		V_{AC}
Weight m		55		g

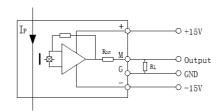

Remarks:


- 1. If VC is less than the minimum value, the measurement will be inaccurate. If VC is greater than the maximum value, it may cause permanent failure of the measuring device.
- 2. When $\pm 12V < V_{CC} < \pm 15V$, will reduce the measurement range.


3.
$$V_{OUT} = 4.00 * \frac{R_L}{102 + R_L} * \frac{I_P}{I_{PN}} + V_{OE}$$


- 4. di/dt > 50A/uS
- 5. Small signal bandwidth should avoid overheating of the core at high frequencies. (The type of material directly affects the bandwidth as well, and the high-frequency core sensor needs to be selected at high frequencies.)

Dimensions (in mm)



Notes:

1. Size error: ± 1 mm;

2. Primary aperture: □20.5*10.5mm;

3. Fastening hole: φ4.5mm;

4. The output terminal is 2501P04V00A, compatible with 5045;

5. The IP indication direction is the positive direction of the current;

6. Incorrect wiring may cause damage to the sensor.