1

PCB Mounting Hall effect Current Sensor

SCK29 Series

Product description

Features:

- Based on Hall effect measurement principle, open loop circuit mode.
- The isolation voltage between primary and secondary is greater than 3000VAC.
- Easy to install, small size, does not take up space.
- Comply with UL94-V0 flame retardant rating.
- Single-chip programmable Hall IC is adopted.

Performance:

- It can measure DC, AC, pulse, and various irregular waveform currents of cable conductors under isolation conditions.
- +5V working voltage, fast response speed, low zero drift, low temperature drift, high accuracy and good linearity.
- Dynamic performance (di/dt and response time) is optimal when the busbar is fully filled with primary perforations.
- Strong ability to resist external electromagnetic interference (BCI, EFT, CS, CE, ESD, dv/dt, etc.).

Application:

• It can be widely used in photovoltaic inverters, electric vehicle drivers, battery management and other products.

Implementation standards:

- GB/T 7665-2005
- JB/T 7490-2007
- JB/T 25480-2010
- JB/T 9473-2020
- SJ 20792-2000

Certification

Shenzhen SoCan Technologies Co.,Ltd

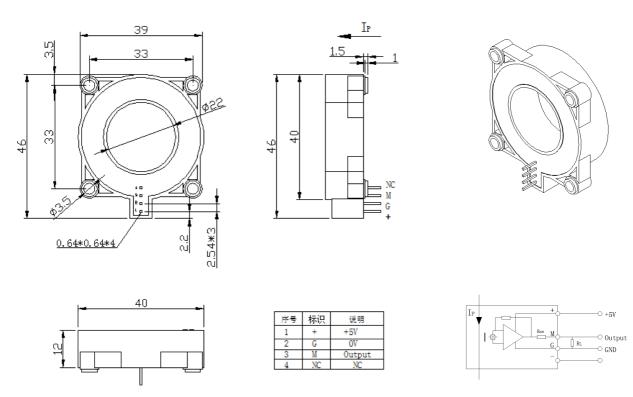
SoCan is committed to continuously improving product quality, and the company reserves the right to update its products.

Technical Parameters

Model	SCK29-						
Parameters (25°C)	100A	200A	300A	400A	500A		
Primary Current (A)I _{PN}	100A	200A	300A	400A	500A		
Primary Current Max. Peak Value (A) I _{PM}	±100A	±200A	±300A	±400A	±500A		
Output voltage (V) V_{out} @± I_{PN} , R_L =10K Ω	2.5V±2V						

Electrical Data

Item	Min.	Typical	Max.	Unit
Input power supply voltage range Vc (±5%) (Remark 1, Remark 2)	+4.5	+5	+5.5	V _{DC}
Current consumption Ic	-	+13	+15	mA
Withstand resistance R _{INS} @500V DC		2.5		V
Output voltage Vout $@I_{PN}$, R _L =10K Ω , T _A =25°C	$V_{OUT} = \frac{V_{CC}}{2} + 2.0 * \frac{V_{CC}}{5} * \frac{I_P}{I_{PN}}$			V
Output internal resistance R _{OUT}	-	1	-	Ω
Load Resistance R _L (Remark 3)	10	-	-	KΩ
Accuracy X $@I_{PN}$, $T_A = 25 ^{\circ}C$	-	±1	-	%
Linearity ϵ_L @R _L =10K Ω , T _A =25°C	-	±0.5	-	%I _{PN}
Offset voltage $V_{OE} @T_A = 25 \degree C$	-	±10	±20	mV
Hysteresis voltage V_{OM} @ $I_{PN} \rightarrow 0$	-	±10	±20	mV
Temperature Coefficient of Offset Voltage TCV _{OE}	-	±0.05	±1	mV/°C
Output voltage temperature coefficient TCV _{out}	-	±0.05	±0.1	%∕°C
Response time $t_D @ 0 \rightarrow I_{PN}$	-	3	5	us
Power-on delay	-	-	5	ms
Ambient operating temperature T _A	-40	25	125	°C
Ambient storage temperature T _s	-40	25	125	°C
Withstand voltage V _D @50Hz,60s,0.1mA	_	3000	-	V _{AC}
Weight m	-	37	-	g


Shenzhen SoCan Technologies Co.,Ltd SoCan is committed to continuously improving product quality, and the company reserves the right to update its products.

Remarks:

1. VC is less than the minimum value, which will lead to inaccurate measurement, VC is greater than the maximum value, which may cause permanent failure of the measurement device.

2. The zero bias voltage and output voltage are linearly related to Vc, so the accuracy of Vc should be ensured as much as possible when applying.

Dimensions (in mm)

Notes:

- 1. Size error: ±0.5mm;
- 2. Primary aperture: φ22mm;
- 3. Fastening hole: φ 3.5mm*4;
- 4. Lead output: □0.64*0.64mm pitch 2.54*3mm;
- 5. The IP indication direction is the positive direction of the current;
- 6. The temperature of the primary conductor shall not exceed 105°C;
- 7. Incorrect wiring may cause damage to the sensor.

SoCan is committed to continuously improving product quality, and the company reserves the right to update its products.