Hall effect Current Sensor

SCB₁

Product description

Features

- Based on Hall effect measurement principle, close loop circuit mode.
- The isolation voltage between primary and secondary is greater than 3000VAC.
- Comply with UL94-V0 flame retardant rating.

Performance

- It can measure DC, AC, pulse, and various irregular waveform currents of cable conductors under isolation conditions.
- Very low temperature drift, zero drift, fast response time, good linearity, accuracy can reach 0.1%.
- Dynamic performance (di/dt and response time) is optimal when the busbar is fully filled with primary perforations.
- Strong ability to resist external electromagnetic interference (BCI, EFT, CS, CE, ESD, dv/dt, etc.).

Application

It can be widely used in inverters, UPS, photovoltaic inverters, electric vehicle drives, high-frequency power supplies, inverter welding machines and other products.

Implementation standards

- GB/T 7665-2005
- JB/T 7490-2007
- JB/T 25480-2010
- JB/T 9473-2020
- SJ 20792-2000

Certification

Technical Parameters

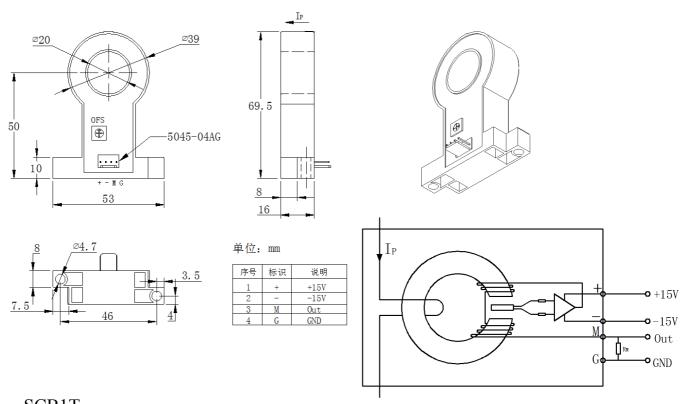
Model	SCB1-/SCB1T-			
Parameters (25°C)	50A	100A	200A	300A
Primary Current (A)I _{PN}	50A	100A	200A	300A
Primary Current Max. Peak Value (A) I _{PM}	±100A	±200A	±400A	±400A
Turns ratio K _N	1:1000	1:1000	1:2000	1:3000
Secondary coil internal resistance R _S @T _A =70°C	20Ω	20Ω	40Ω	77Ω
Output signal I_{SN} $@I_{PN}$, (Remark 2)	±50mA	±100mA	±100mA	±100mA
Measure resistance R _M @I _{PN} ,Vc=±15V,	50~200Ω	30~100Ω	30~80Ω	0~40Ω

Electrical Data

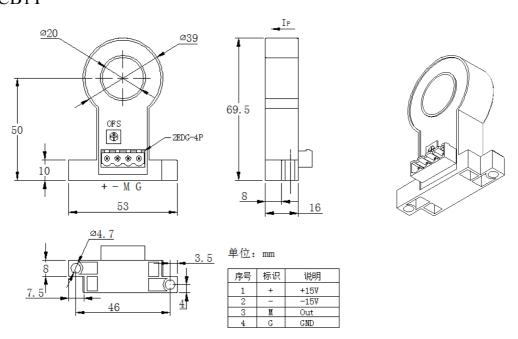
Item	Min.	Typical	Max.	Unit
Input power supply voltage range Vc (±5%) (Remark 1)	±12	±15	±18	V _{DC}
Current consumption Ic Ic @±15V	13	3mA+Output Cu	irrent I _S	mA
Accuracy X @I _{PN} , T _A = 25°C	-	±0.5	±0.8	%
Linearity ε_L @ R_L =10K Ω , T_A = 25°C	-	±0.1	±0.5	%
Offset current I_{OE} @ T_A = 25°C, I_P =0	-	±0.2	±0.5	mA
Magnetic offset current I_{OM} @ $I_P \rightarrow 0$	-	±0.2	±0.5	mA
Temperature coefficient of offset current TCI _{OE}	-	±0.2	±1	mA
Response time $t_D @ 0 \rightarrow I_{PN}$	-	1	-	us
Bandwidth BW	-	50	100K	Hz
Ambient operating temperature T _A	-40	25	85	$^{\circ}$ C
Ambient storage temperature T _s	-40	25	90	$^{\circ}$ C
Withstand voltage V _D @50Hz,60s,0.1mA	-	3000	-	V _{AC}
Weight m	-	60	-	g

Remarks:

1. VC greater than the maximum value may cause the measurement device to fail permanently.


Shenzhen SoCan Technologies Co.,Ltd

2.
$$I_{OUT} = I_{SN} * \frac{I_P}{I_{PN}} + I_{OE}$$


3.Follow speed di/dt>100A/uS

Dimensions (in mm)

SCB1

SCB1T

Shenzhen SoCan Technologies Co.,Ltd

Notes:

- 1. Size error: ±1mm;
- 2. Primary aperture: φ20mm;
- 3. Fastening hole: φ4.5mm*2;
- 4. SCB1 output terminal: Molex 5045-04AG;
 - SCB1T output terminal: 2EDGVC-5.08-4P;
- 5. The IP indication direction is the positive direction of the current, and the OFS is the zero adjustment;
- 6. Incorrect wiring may cause damage to the sensor.

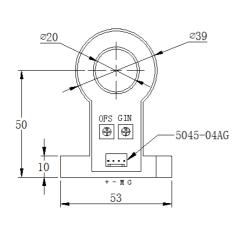
Data Sheet

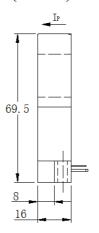
Model	SCB1V-/SCB1VT-			
Parameters (25°C)	50A	100A	200A	300A
Primary Current (A)I _{PN}	50A	100A	200A	300A
Primary Current Max. Peak Value (A) I _{PM}	±100A	±200A	±400A	±400A
Turns ratio K _N	1:1000	1:1000	1:2000	1:3000
Output signal I _{SN} @I _{PN}	±5V(0.5%)			

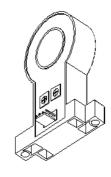
Electrical Data

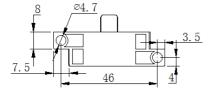
Item	Min.	Typical	Max.	Unit
Input power supply voltage range Vc (±5%) (Remark 1)	±12	±15	±18	V_{DC}
Current consumption Ic Ic @±15V	13	3mA+Output Cu	arrent I _S	mA
Secondary coil internal resistance R_S @ T_A =70°C	1	100	-	Ω
Measure resistance R _M @I _{PN} ,Vc=±15V	1	10	-	ΚΩ
Accuracy X @I _{PN} , T _A = 25°C	-	±0.5	±0.8	%
Linearity ε_L @ R_L =10K Ω , T_A = 25°C	-	±0.1	±0.5	%
Offset current I_{OE} @ T_A = 25°C, I_P =0	-	±20	±25	mV
Magnetic offset current I_{OM} @ $I_P \rightarrow 0$	-	±10	±15	mV
Temperature coefficient of offset current TCI _{OE}	-	±0.2	±1	mA
Response time $t_D @ 0 \rightarrow I_{PN}$	-	1	-	us
Bandwidth BW	-	50	100K	Hz
Ambient operating temperature T _A	-40	25	85	$^{\circ}$
Ambient storage temperature T _s	-40	25	90	$^{\circ}$ C
Withstand voltage V _D @50Hz,60s,0.1mA	-	3000	-	V _{AC}
Weight m		60	-	g

Remarks:

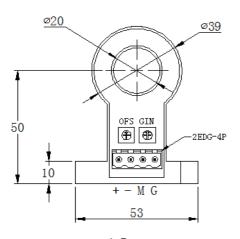

1.VC greater than the maximum value may cause the measurement device to fail permanently.

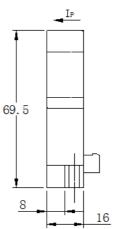

Shenzhen SoCan Technologies Co.,Ltd

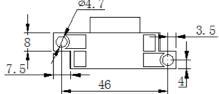

2.
$$V_{OUT} = 5.05 * \frac{R_L}{100 + R_L} * \frac{I_P}{I_{PN}} + V_{OE}$$

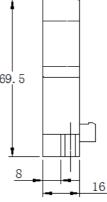

3. Follow speed di/dt \geq 100A/uS

SCB1V(Voltage Output)Dimension (in:mm)

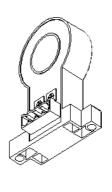


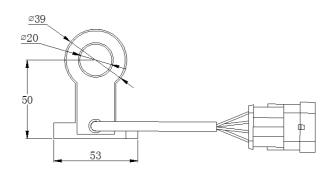


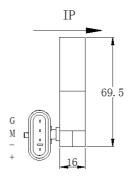


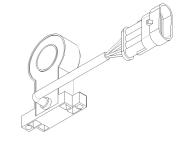

单位: mm 标识 说明 +15V -15V Out

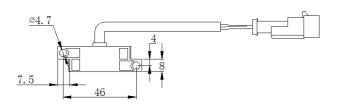
SCB1VT(Voltage Output)Dimension (in:mm)










Shenzhen SoCan Technologies Co.,Ltd

SCB1R(Voltage Output)Dimension (in:mm)

单位:	mm	
序号	标识	
1		

序号	标识	说明
1	G	ov
2	M	Output
3	-	-15V
4	+	+15V

Notes:

1. Size error: ± 1 mm;

2. Primary hole diameter: φ20mm;

3. Fastening hole: φ4.5mm*2;

4.SCB1V Output Terminal: Molex 5045-04AG; SCB1VT output terminal: 2EDGVC-5.08-4P;

SCB1R Housing: 282106-1/AMP SCB1R terminal: 282404-1/AMP

SCB1R Waterproof Plug: 281934-1/AMP

- 5. The IP indication direction is the positive direction of the current, the OFS is the zero adjustment, and the GIN is the output adjustment;
- 6. Incorrect wiring may cause damage to the sensor.

Shenzhen SoCan Technologies Co.,Ltd