
Hall effect Open-loop current sensor

SCK8L

Product description:

Features

- Based on Hall effect measurement principle, open loop circuit mode.
- The isolation voltage between primary and secondary is greater than 2500VAC.
- Header output, PCB mounting method.
- Comply with UL94-V0 flame retardant rating.
- Using automatic adjustment technology, product performance is better.

Performance:

- Can measure DC, AC, pulse, and various irregular waveforms under isolated conditions.
- Wide measurement range, fast response speed, low zero drift, low temperature drift, high accuracy and good linearity.
- Dynamic performance (di/dt and response time) is optimal when the busbar is fully filled with primary perforations.
- Strong ability to resist external electromagnetic interference (BCI, EFT, CS, CE, ESD, dv/dt, etc.).

Application

It can be widely used in inverters, UPS, photovoltaic inverters, electric vehicle drives, high-frequency power supplies, inverter welding machines and other products.

Implementation standards

- GB/T 7665-2005
- JB/T 7490-2007
- JB/T 25480-2010
- JB/T 9473-2020
- SJ 20792-2000

Certification

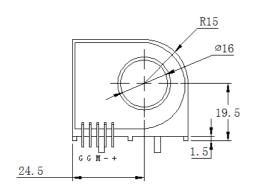
Technical Parameters

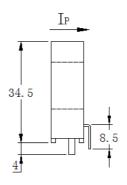
Model	SCK8L-			
Parameters (25°C)	50A	100A	150A	200A
Primary Current I _{PN}	50A	100A	150A	200A
Primary Current Max. Peak Value I _{PM}	±150A	±300A	±450A	±450A
Output voltage V_{out} @ $\pm I_{PN}$, R_L =10K Ω	±4V±1%			

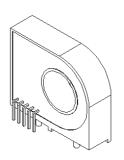
Electrical Data

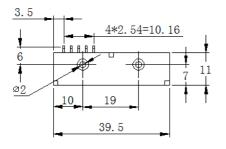
Item	Min.	Typical	Max.	Unit
Input power supply voltage range Vc (±5%) (Remark 1, Remark 2)	±11	±15	±18	V _{DC}
Current consumption Ic	-	±13	±15	mA
Withstand resistance R _{INS} @500V DC	500	-	-	ΜΩ
Output voltage Vout @ I_{PN} , R_L =10K Ω , T_A =25°C	3.960	4.000	4.040	V
Output internal resistance R _{OUT}	-	102	-	Ω
Load Resistance R _L (Remark 3)	1	10	1	ΚΩ
Accuracy X @I _{PN} , T _A = 25°C	-	±1	-	%
Linearity ε_L @ R_L =10K Ω , T_A = 25°C	-	±0.5	-	%I _{PN}
Offset voltage V _{OE} @T _A = 25 °C	-	±10	±20	mV
Hysteresis voltage V _{OM} @ I _{PN} →0	-	±10	±20	mV
Temperature Coefficient of Offset Voltage TCV _{OE}	-	±0.5	±1	mV/°C
Output voltage temperature coefficient TCV _{out}	-	±0.05	±0.1	%/°C
Response time $t_D @ 0 \rightarrow I_{PN}$	-	3	5	us
Ambient operating temperature T _A	-40	25	125	$^{\circ}$
Ambient storage temperature T _s	-40	25	125	$^{\circ}$
Withstand voltage V _D @50Hz,60s,0.1mA		2500		V_{AC}
Weight m	-	25	-	g

Remarks:

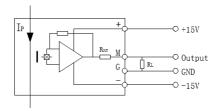

1. If VC is less than the minimum value, the measurement will be inaccurate. If VC is greater than the maximum value, it may cause permanent failure of the measuring device.


2. When $\pm 12V < VCC < \pm 15V$, will reduce the measurement range.


$$V_{OUT} = 4.04 * \frac{R_L}{102 + R_L} * \frac{I_P}{I_{PN}} + V_{OE}$$


4. di/dt > 50A/uS

Dimensions (in mm)



序号	标识	说明		
1	+	+15V		
2	_	-15V		
3	M	Output		
4	G	GND		
5	G	GND		

Notes:

- 1. Size error: ±1mm;
- 2. Primary aperture: φ16mm;
- 3. The IP indication direction is the positive direction of the current;
- 4. Lead pin output, spacing 2.54*4;
- 5. Two φ2mm pins on the bottom for welding positioning;
- 6. The temperature of the primary conductor shall not exceed 105°C;
- 7. Incorrect wiring may cause damage to the sensor.