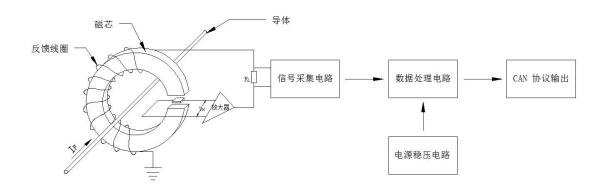
CAN 总线电流传感器 -使用说明

版本号V1.0


2023年03月01日

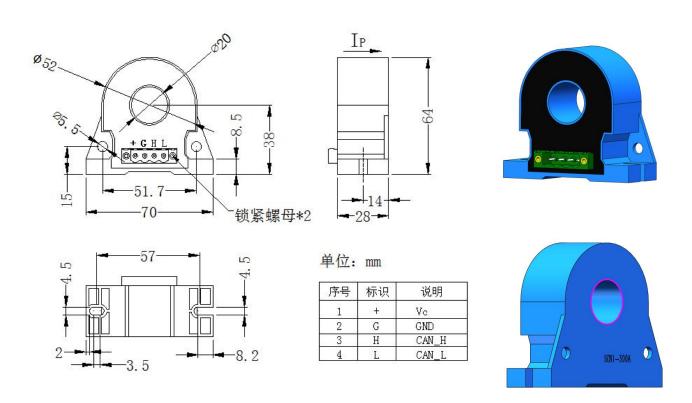
1、概述

SCN 系列基于 CAN 总线霍尔电流传感器,采用霍尔效应原理,对电流信号进行处理,按照 CAN 协议 2.0 A 通讯协议的方式以数字量输出,具有体积小,输出精度高,低零飘,性能稳定的特点。

广泛应用于电动汽车、运输等领域电流测量及控制,是实现节能优化控制的理想部件、 器件。

2、工作原理

3、技术参数


型号	SCN2-				
指标(25℃)	100A	200A	300A	400A	500A
额定电流 I _{PN}	100A	200A	300A	400A	500A
测量范围 I _{PM}	±300A	±500A	±500A	±500A	±500A
输出形式	CAN2.0-A 标准帧格式				

4、性能参数

项目名称	最小值	典型值	最大值	单位
工作电压范围 Uc	9	15	30	V_{DC}
电流消耗 Ic @I _P =0A Uc=15V	_	30	35	mA
电流消耗 Ic @I _P =500A Uc=15V	_	_	200	mA
分辨率	_	0. 1	_	A

内孔尺寸φ	_	20	-	mm
精确度X @I _{PN} , T _A = 25℃	_	±1	-	%
线性度ε _L @R _L =10KΩ, T _A = 25℃	_	±0.5	±1.0	$\%I_{ ext{PN}}$
失调电压温度系数 TCV _{oe}	_	50	100	ppm/°C
输出电压温度系数 TCV _{out}	_	150	300	ppm/°C
启动时间 Tstart	_	150	-	mS
工作环境温度范围 T _A	-40	25	85	$^{\circ}$ C
储存环境温度范围 T _s	-40	25	85	$^{\circ}$ C
绝缘耐压 V _D @50Hz, 60s, 0.1mA	_	3000	-	V _{AC}
质量 m	-	110	-	g

5、外形尺寸

6、接线顺序

1: + --- (+15V 工作电源)

2: GND --- (公共接地端)

3: H --- (CAN_H)

4: L --- (CAN_L)

7、通讯协议技术要求

- 1 输出信号为数字信号 CAN 信号,即 CANH 与 CANL;
- 2 信号线增加屏蔽层且引出接地线;
- 3满足汽车 CAN 通讯协议的标准要求;
- 4 输入电源为单电源且满足 9V-30V 宽电压供电,以便兼容汽车的启动电源;
- 5 总线波特率: 500K bps, 数据链路层采用 CAN 2.0A 定义;
- 6报文发送周期 100ms;
- 7 ID 格式使用 CAN2. 0A 标准帧格式 (ID 长度为 11 位);
- 8根据正负值判定充电和放电电流;
- 9 电流报文数据使用四个字节表示;
- 10 报文格式:

本协议按照 Intel 格式发送,精确到 1%,单位: mA。

位置	数据名	格式说明
DATA [0]	0x80	电流显示
DATA [1]	1] 0x00	80000000H = 0mA, 7FFFFFFFH=-1mA
DATA [2]	0x00	80000001H=1mA
DATA [3]	0x00	
DATA [4]	0x00	
DATA [5]	0x00	
DATA [6]	0x00	
DATA [7]	0x00	

8、传感器的安装

传感器安装通常有两种方式: 立装方式、平装方式,可根据现场决定。

9、注意事项

- 1、不论采用何种安装方式,保证导体与传感器窗口的中心同心。
- 2、用前需接通工作电源,预热时间不低于1分钟,使传感器进入稳定工作状态,保证应用精度。
- 3、输出导线应选用以屏蔽线连接,以免干扰。
- 4、原边被测电流方向须与外壳所示箭头方向一致。
- 5、输入电流排的温度不超过 80℃,当电流导体完全充满内孔时(若不能完全内孔时应将电流排固定在内孔中心位置)可以得到最好的指标;同时测量小于额定电流时采用多匝线圈,可以提高测量精度。

10、维护与保养

- 1、安装使用确保传感器不变形,避免重物敲击,避免热源接近传感器。
- 2、在严重腐蚀环境下,避免腐蚀、粉尘,必须使接口、螺栓、引线接口处采取密封。

附 1: 售后服务体系

我公司有专业的售后服务技术团队,提供如下售后服务:

- 1、24小时电话技术指导服务;
- 2、售后服务工程师现场服务;
- 3、机器设备返修服务等。

公司建有完整的销售模式和严格的售后服务体系,同时建有用户信息数据库,可随时查询和反馈用户的使用状况、需求方式、质量等动态信息,为用户提供可靠的技术支持。

工作日时间段(9.00-12:00,13:30-17:00) 服务热线: 0755-88659381 88659382

附 2: 内容更新目录

版本	更新内容	作者	时间
1.0	修订使用说明书	ZH	2023/03/01